Journal of Organometallic Chemistry, 146 (1978) 17–21 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE REACTION BETWEEN [Pt(cod)Cl(PMe₂Ph)]BF₄ AND ARYLTRIMETHYLTIN COMPOUNDS *

COLIN EABORN^{*}, KEVIN J. ODELL and ALAN PIDCOCK School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received October 13th, 1977)

Summary

The complex $[Pt(cod)Cl(PMe_2Ph)]BF_4$ reacts in dichloromethane with SnArMe₃ compounds having Ar = 2-thienyl, 2-benzo[b]thienyl, or 2-benzo-[b]furyl to give air-stable cationic aryl complexes $[Pt(cod)Ar(PMe_2Ph)]BF_4$. No reaction takes place when Ar = Ph. The cod ligand in the new complexes can be readily replaced by ligands such as PMe_2Ph , dppe, or 4-dimethylaminopyridine. The ¹H and ³¹P-{¹H} NMR parameters of the various complexes are reported.

Introduction

We recently described the reactions between aryltrimethyltin compounds and the complex $[Pt(cod)Cl_2]$ to give [Pt(cod)(Ar)Cl] or $[Pt(cod)Ar_2]$, depending on the mol ratio of reagents used [1]. We showed that the rate of reaction increased with the ease of electrophilic substitution at the corresponding Ar—H bond, so that 2-thienyl- and 2-furyl-tin compounds, for example, were especially reactive. We have now examined the interaction of some aryltrimethyltin compounds with the cationic complex $[Pt(cod)Cl(PMe_2Ph)]BF_4$.

Results and discussion

The complex $[Pt(cod)Cl(PMe_2Ph)]BF_4$ reacted during a few hours' reflux in dichloromethane with SnArMe₃ compounds having Ar = 2-thienyl, 2-benzo[b]-furyl, or 2-benzo[b]thienyl, to give the new complexes $[Pt(cod)Ar[PMe_2Ph)]$ -BF₄ (eq. 1). A small quantity of Sn(BF₄)Me₃ was obtained as a white precipi-

 $[Pt(cod)Cl(PMe_2Ph)]BF_4 + SnArMe_3 \rightarrow [Pt(cod)Ar(PMe_2Ph)]BF_4 + SnClMe_3 (1)$

^{*} No reprints available.

18	ŋß						•	
	Aryl protons r (nnm)			2,2-3,5	2.2-3.8	2,2-3,6	2,3-3,0	
			(r-ch3) (ppm)	8,20	8,10 8,05	8,10	8.23	et se paratio
	Alkyl phosphorus protons	2J.	(HZ) (HZ)	12	12	12	12	^a Recorded in CDC13, except for R = Cl, for which CD ₂ Cl ₂ was used. ^b Positive shifts are to high field of (MeO) ₃ P in C ₆ D ₆ . Resolution 2.44 Hz. ^c Doublet separation. strictly ² /(P-CH) + ⁴ /(PPt-PCH) .
	Alkyl phos	3J.	(Hz) (Hz)	42	42 49	42	43	ssolution 2,4
	Methyl-	ene protons (ppm)		7,07,6	7.1-7.6	7.1-7.6	7,08,0	in C ₆ D ₆ . Re
			T (Pt—CH) (ppm)	4,59	4.64 4.57	4,59	4,60	d of (MeO) ₃ P
		trans-R	2 <i>J.</i> (Pt—CH) (Hz)	40	41	40	65	are to high fiel
((cod)]X			т (РtСН) (ррт)	4.20	4.22	4,19	3,80	ositive shifts a
ТАВLE 1 1H ^a AND ³¹ P.{ ¹ H} NMR DATA FOR THE COMPLEXES [PtR(PMe2 ^{Ph})(cod)]X	8U0		2.J. (Pt—CH) (Hz)	61	48 9	20 50	44,5	was used. ^b P
Saxardo	Olefin protons	trans-PR3	3 <i>J.</i> (PPtCH) (Hz)	2,6	2,0 7	2.6	3,0	vhich CD ₂ Cl ₂
ант яо	6 b (mqa)			145,9	146.3	145.9	138,9	= Cl, for .
NMR DATA F	1J(Pt-P)	3469	3460	3469	2961	L(PPt-PCH)R		
цъ.{н]}.	x			BF_4	BF4	ClOA	BF_4	P-CH) +'
TABLE 1 1H ^d AND ³	R			2-C4H ₃ S	2-C ₈ H ₅ O	2-CoHeS	ci Ci	a Recorded strictly 2J(

tate, indicating that some exchange occurs between the tetrafluoroborate complex and the chlorotrimethyltin formed, and in order to obtain analytically pure samples of the cationic complexes an excess of sodium tetrafluoroborate was added.

The [Pt(cod)Ar(PMe₂Ph)]BF, complexes are air-stable white solids, very soluble in polar organic solvents; the conductivities in nitromethane are as expected for 1/1 electrolytes. The one perchlorate salt isolated has similar properties. There is no band in the 340-250 cm⁻¹ region of the IR spectra, confirming the absence of Pt-Cl bonds, but the characteristic bands of the counterions BF_4^- (1050s and 525ms cm⁻¹) and ClO_4^- (1100vs, 620s cm⁻¹) are present. The NMR parameters are listed in Table 1. In the ¹H NMR spectrum the olefin protons give two distinct resonances with platinum satellites, and the low field peak is further split by coupling to the phosphorus nucleus $[{}^{3}J(PPt-CH 2.5 Hz)]$, and thus comes from the olefin protons *trans* to the phosphine ligand. The coupling constant ${}^{2}J(Pt-CH)$ is larger for the low field peak, which is consistent with the lower *trans* influence of a triorganophosphine than of an aryl ligand. The coupling constants ${}^{1}J(Pt-P)$ of the $[Pt(cod)Ar(PMe_{2}Ph)]BF_{1}$ complexes, viz. 3440-3460 Hz, are substantially larger than that for the [Pt(cod)Cl(PMe_Ph)]-BF₄ complex (2961 Hz); since the triorganophosphine ligand is *trans* to the olefin in all cases, the aryl groups clearly exert fairly large *cis*-influences.

Some reactions of the complexes $[Pt(cod)(2-C_1H_3S)(PMe_3Ph)]BF_1$ were studied by monitoring the changes in the ³¹P-{¹H} NMR spectrum. It was found that the cod ligand can be readily displaced by other neutral or anionic ligands. Thus two molar proportions of PMe, Ph reacted immediately in CD, Cl, with [Pt(cod)(2-C₁H₃S)(PMe₂Ph)]BF₄ to give [Pt(2-C₁H₃S)(PMe₂Ph)]BF₄, the NMR spectrum of which shows the characteristic doublet and triplet sets of resonances. Similar use of dppe gave a complex central resonance of multiplicity 12 associated with an ABX spin system, and an intricate arrangement of platinum satellites consistent with the structure $[Pt(2-C_4H_3S)(dppe)(PMe_2Ph)]BF_4$. Even 4-dimethylaminopyridine readily effected the displacement at room temperature, to give $[Pt(2-C_4H_3S)(4-Me_2NC_5H_5N)_2(PMe_3Ph)]BF_4$. The ³¹P-{¹H} NMR spectrum of the solution obtained by treatment of $[Pt(cod)(2-C_{4}H_{3}S)(PMe_{7}Ph)]$ -BF, with an excess of Et, NI in methanol containing a little water showed that the final products were $Et_1N[Pt(2-C_1H_3S)I_2(PMe_2Ph)], \delta 157.0 \text{ ppm}, {}^1J(Pt-P)$ 4023 Hz and trans-[Pt(C₄H₃S)I(PMe₂Ph)₂], δ 151.4 ppm, ¹J(Pt-P) 2583 Hz. In the reaction with Et₄NCl, *cis*-, δ 153.9 ppm, ¹*J*(Pt–P) 4507 Hz, and *trans*- $[Pt_2(2-C_4H_3S)_2Cl_2(PMe_3Ph_2)] \delta$ 153.9 ppm, $^{1}J(Pt-P)$ 4578 Hz, were initially produced, but further reaction took place to give $Et_N[Pt(2-C_H_3S)Cl_(PMe_Ph)]$, δ 157.2 ppm, ¹J(Pt-P) 4263 Hz, and trans-[Pt(2-C_4H_3S)Cl(PMe_2Ph)_2], δ 145.6 ppm, ¹J(Pt-P) 2651 Hz.

No detectable reaction took place when $[Pt(cod)Cl(PMe_2Ph)]BF_4$ was treated with the markedly less reactive tin compound SnPhMe₃, the complex being recovered almost quantitatively after prolonged refluxing in dichloromethane. When reaction of $100^{\circ}C$ in sym-tetrachloroethane (which was very satisfactory for reactions between $[Pt(cod)Cl_2]$ and the less reactive SnArMe₃ compounds) was used, extensive decomposition occurred, and a little $[PtCl_2(PMe_2Ph)_2]$ was the only product isolated. The cationic complex $[Pt(cod)Cl(PMe_2Ph)]BF_4$ is thus markedly less reactive than the neutral $[Pt(cod)Cl_2]$ towards aryltin compounds. Since both reactions seem to involve electrophilic attack at the aryltin bond, the low reactivity of the cationic complex would not necessarily be expected, but it is consistent with the low reactivity of the olefin ligand in [Pt-(cod)Cl(PMe₂Ph)]BF₄ towards nucleophiles [2], and can be associated with the presence of a triorganophosphine ligand on platinum.

Experimental

20

Reactions of $[Pt(cod)Cl(PMe_2Ph)]BF_4$ with ArSnMe₃ compounds

2-Thienyltrimethyltin (0.57 g, 2.3 mmol) was added to a solution of [Pt(cod)-Cl(PMe₂Ph)]BF₄ (1.13 g, 2.0 mmol) (prepared as described in ref. 2) in dichloromethane (4.0 cm³). The mixture was stirred for 14 h at room temperature, during which the solution went yellow and a white solid separated. The precipitate was filtered off, washed with benzene, and identified as Sn(BF₄)Me₃ (0.08 g). The filtrate was evaporated under vacuum, and the residual oil was washed with pentane (15 cm³) to remove some SnClMe₃. The residue was recrystallized twice from CHCl₃/Et₂O to give pale-yellow crystals of 2-thienyl(cycloctadiene)-(dimethylphenylphosphine)platinum(II) tetrafluoroborate (0.84 g, 69%), m.p. 150–152°C (decomp.), ν (BF₄) 1050vs, 530m cm⁻¹, molar conductance, Λ , in MeNO₂ (measured on ca. 10⁻³ M solution) 104 ohm⁻¹ cm² mol⁻¹ (Found: C, 39.0; H, 4.2. C₂₀H₂₆BF₄PPtS calcd.: C, 39.3; H, 4.3%).

A similar procedure gave the other $[Pt(cod)Ar(PMe_2Ph)]BF_4$ complexes, with properties as follows: (a) Ar = 2-benzo[b]furyl, m.p. 179–183°C (decomp.), Λ 109 ohm⁻¹ cm² mol⁻¹ (Found: C, 44.7; H, 4.3. C₂₄H₂₈BF₄OPPt calcd.: C, 44.7; H, 4.4%). (b) Ar = 2-benzo[b]thienyl, m.p. 152–160°C (decomp.), Λ 100 ohm⁻¹ cm² mol⁻¹ (Found: C, 43.1; H, 4.0. C₂₄H₂₈BF₄PPtS calcd.: 43.1; H, 4.3%).

Preparation of [Pt(cod)(2-thienyl)(PMe₂Ph)]ClO₄

A suspension of $[Pt(cod)(2-thienyl)(PMe_2Ph)]BF_4$ (0.1 g, 0.16 mmol) and sodium perchlorate (0.3 g, 2.4 mmol) in acetone (15 cm³) was stirred overnight at room temperature then filtered. The solvent was removed under vacuum, and the residual oil dissolved in chloroform. Addition of ether gave $[Pt(cod)(2-thienyl)-(PMe_2Ph)]ClO_4$ (0.095 g, 93%), m.p. 131°C (decomp.); $\nu(ClO_4)$ 1100vs, 620s, cm⁻¹; Λ 94 ohm⁻¹ cm² mol⁻ⁱ (Found: C, 38.5; H, 4.2. C₂₀H₂₆ClO₄PPtS calcd.: C, 38.5; H, 4.2%).

Displacement of (cod) from $[Pt(cod)(2-thienyl)(PMe_2Ph)]BF_4$

When 2 molar proportions of PMe₂Ph were added to $[Pt(cod)(C_4H_3S-2)-(PMe_2Ph)]BF_4$ in CD₂Cl₂ the ³¹P-{¹H} NMR spectrum showed clean conversion into $[Pt(C_4H_3S-2)(PMe_2Ph)_2]BF_4$: δ (relative to $(MeO)_3P$) 157.3 ppm, ¹J(Pt-P) 2036 Hz (P trans to Ar); 147.9 ppm, ¹J(Pt-P) 2461, ²J(Pt-P) 22 Hz (P trans to PMe_2Ph).

Similarly, one molar proportion of $Ph_2PCH_2CH_2PPh_2(dppe)$ gave [Pt(C₄H₃S-2)-(PMe₂Ph)(dppe)]BF₄ (see main text) while an excess of 4-dimethylaminopyridine gave [Pt(C₄H₃S-2)(4-Me_2NC_5H_4N)_2(PMe_2Ph)]BF₄, δ 158.8 ppm, ¹J(Pt-P) 3658 Hz.

Acknowledgements

We thank the Science Research Council for the award of a Research Studentship (to K.J.O.), and Chugoku Marine Paints, Ltd. (Japan) for a generous gift of dichlorodimethyltin.

References

¹ C. Eaborn, K.J. Odell and A. Pidcock, J. Organometal. Chem., 96 (1975) C38; J. Chem. Soc. Dalton, in press.

² C. Eaborn, N. Farrell and A. Pidcock, J. Chem. Soc. Dalton, (1976) 289.